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Abstract Life cycle inventories are data intensive by definition and missing data 
continues to hinder more complete and accurate assessments. This article proposes 
a statistical approach to address data gaps in life cycle inventories applied to large  
scale  hydroelectric  power.  The  procedure  relies  on  relationships  between  the 
technical characteristics of hydropower plants and the material and energy flows 
necessary  throughout  the  life  cycle  of  such  systems.  With  highly  flexible 
estimators known as kriging, predicting the value of material and energy flows 
suddenly  becomes  more  accurate.  From relatively  small  sample  sizes,  kriging 
allows better estimation without averaging out any of the original data. Similarly,  
parameter  estimation  and  model  validation  can  be  performed  through  cross 
validation which assumes very little on the data itself. Mean absolute errors for 
various forms of kriging and regression show that the former performs better than 
the latter, more so in cases of incomplete data.

1 Introduction

Hydroelectric  power  generation  accounts  for  approximately  16%  of  world 
electricity output, with China, Canada and Brazil being the leading producers [1]. 
Despite widespread claims of hydroelectricity being a renewable source of power, 
very few studies on its potential impact exist. Indeed, less than a handful of life  
cycle  assessments  (LCAs)  have  been  conducted  on  hydro  power  plants  [2]. 
Hydroelectric  projects  depend  on  numerous  local  conditions,  topography, 
hydrology,  geology  as  well  as  factors  affecting  human  populations  and  the 
environment.  This specificity of  hydroelectric  power accounts  for  much of the 
lack  of  necessary  data,  making  inventory  analysis  and  impact  assessments 
notoriously  difficult.  Moreover,  new  hydropower  projects  became  larger  over 



time,  multiplying  data  collection  efforts  and  challenging  the  development  of 
environmental assessment tools [3]. Generic hydropower plants hardly exist.

Quantifying and qualifying the gains and loses to society and the environment 
from hydropower projects is a monumental task the World Commission on Dams 
managed to undertake [4]. Most studies have emphasized the site specific issues 
which translate into questionable comparisons with other large sources of power. 
Hence  the  goal  of  this  article,  taking  a  statistical  approach  to  enable  better  
estimation of life cycle inventory data on hydropower plants and more generally, 
showing how data gaps in life cycle inventories (LCIs) and associated databases 
can be alleviated with appropriate statistical estimators. Besides primary sources 
of  data,  this  article  draws  upon  existing  inventories,  namely  the ecoinvent 
database and Itaipu assessment [2,5]. A description of the hydropower systems 
follows before the methodological approach is explained. Results emphasize the 
importance of the construction phase of hydropower and a conclusion ends this 
article.

2 System characteristics

The power of hydroelectric plants usually depends on two factors, the water flow 
and the  hydraulic  head  or  height  difference  between  water  intake  and  turbine 
according to the relation:

P= g Q H

where  P is power (W),  η is a coefficient of efficiency,  ρ is the density of water 
(~1000 kg/m3), g is the acceleration due to gravity (~9.8 m/s2), Q is the flow rate 
(m3/s) and H is the head (m). In practice this is implemented with either low head, 
high  flow (generally  run-of-river  plants),  high  head,  low flow (generally  with 
reservoirs) or combinations in between. Again this scale varies considerably with 
respect to site specifications.

Overall, hydroelectric power plants are 82 to 88 % efficient [5].  The difference 
between run-of-river and reservoir plants lies essentially with storage which is one 
of the key advantages of hydroelectric dams [6]. Electricity cannot be stored such 
that supply must match demand almost instantaneously. Technically, hydropower 
plants can respond and adjust their production within minutes and are therefore 
well suited for both base and peak load production, particularly with a reservoir. 



Despite the specificity of every power plant and reservoir, a set of characteristics 
was  chosen  based  primarily  on  data  availability.  Table  1  summarizes  the 
characteristic variables of hydroelectric power plants referred to in this article. 

Tab.1: System characteristics

Characteristic variables Ranges Notes

Type 0/1 Run-of-river/Reservoir

Total installed capacity (MW) 20 – 14000 -

Annual production (GWh/year) 90 – 90000 Average over ≥ 7 years

Hydraulic head (m) 6 – 1400 -

Surface of reservoir (km²) 0 – 4200 -

Volume of reservoir (km3) 0 – 140 -

3 Methodology

Life  cycle  inventory,  as  defined  by  international  standards,  requires  the 
quantification  of  material  and  energy  flows  as  well  as  emissions  crossing  a 
system's  boundaries  [7].  The  quality  of  a  LCI  directly  influences  the  overall 
quality of an LCA [8]. A number of reasons lead us to hypothesize that statistical 
estimation  can  overcome  both  the  specificity  of  hydropower  with  respect  to 
construction sites and operations and the limitations of current practices dealing 
with missing data in LCI. Analyzing the inventory of electricity generation tends 
to yield higher uncertainties when compiled from generic data [9]. 

Moreover, statistical models have been relatively successful in such cases as with 
the  assessment  of  chemical  manufacturing  [10].  Regression  and  other  linear 
methods have also been applied to  inventory analysis  of  electricity  generation 
[11]. A more flexible estimator is presented here. Borrowed from spatial statistics, 
kriging distinguishes itself on several accounts. Clearly no cartesian points exist in 
LCIs such that  the characteristic variables described above become coordinates 
and  the  material  and  energy  flows  or  emissions  to  be  estimated,  dependent 
variables.  Kriging  is  a  weighted  linear  combination  of  the  observations.  We 
assume a model with both a random function and a deterministic drift or low order 
polynomial. Provided a set of unbiasedness constraints are met, the properties in 
table 2 hold:



Tab.2: Properties of the kriging estimator [12]

Properties Description Expression

Unbiased estimator Expected  values  of  estimates 
and observations are equal E [ Z  xi]=E [ Z  xi ]

Exact estimator No loss of information Z  x i=Z  x i

Screening effect Weights vary according to the 
distance from estimates -

Size and position Covariance  functions  C(h) to 
model observations in space.

h=∥xi−x j∥

Smoothing effect Kriging  varies  less  than  the 
estimated phenomena. Var  Z  x i≤Var Z  x i

where E[ ] and Var( ) are the expectation and variance operators respectively. The 
xi's  are  characteristic  variables  and  the  Z's  corresponding  material  and  energy 
flows. Covariance functions  C(h) translate in formal terms the idea that distinct 
observations close to one another should agree more than if they were far apart. A 
number  of  valid  covariance  functions  exist,  linear,  exponential,  spherical,  etc. 
Each  function  has  3  parameters,  the  first  of  which  is  a  nugget  effect  which 
captures  variations on a small  scale and can be understood as  an interpolating 
smoothing  parameter  [13].  Note  that  since  kriging  is  an  exact  estimator,  it  is 
discontinuous at every observations. The second parameter is a structured variance 
which equals the total variance when added to the nugget effect. Third, the range 
of a covariance function corresponds to the distance h at which the covariance is 
nil or observations are unrelated.

If deterministic and random components as well as covariance functions impart 
great flexibility to the kriging estimator, another advantage is multivariate kriging,  
or  cokriging.  Multivariate  kriging  enables  the  estimation  of  primary  variables 
using data from secondary variables simultaneously [14]. All estimations can be 
performed jointly as the order between primary and secondary variables can be 
interchanged  [15]. For  example,  if  data  on  explosives  is  available  for  the 
construction of most power plants and dams whereas the excavated volumes are 
not,  joint  estimation  might  provide  more  accurate  results  for  excavation.  In 
general, primary and secondary variables need not be observed at the same points. 

The relatively small sample sizes (here  N = 27) available for power generation 
systems  would  forfeit  many  attempts  to  validate  a  model  and  its  parameters. 



Cross-validation  however,  has  no  prior  assumption  such  as  normality  and 
observations take part in both trial and validation sets [16]. Leave-one-out cross-
validation  (LOOCV)  successively  removes  observations  and  derives  estimates 
from neighboring values exactly once. Moreover,  with cokriging,  the values of 
secondary variables for a given observation can be part of the validation data all 
together or one after the other. These two options are referred to as Leave-one-
observation-out  cross-validation  (LOoOCV)  and  Leave-one-variable-out  cross-
validation (LOvOCV), respectively. Comparing the results of the two validation 
approaches  indicate  some  of  the  advantages  of  cokriging,  should  the  errors 
calculated from LOvOCV be lower than that of LOoOCV.

4 Results

Data on the construction, operation and removal of hydropower plants is scarce. A 
sample from different sources and for widely different power plants was carefully 
assembled. Emphasis was put on the construction phase, less controversial than 
reservoir flooding and responsible for most of the overall impact in many cases 
[2,5,17]. Time is clearly an important factor to be considered with construction. In  
particular,  Ribeiro  and  his  colleague  [2]  have  shown the LCI  of  hydroelectric 
power plants to be sensitive to time horizons. Optimistically the useful lives of 
infrastructures and equipments were adjusted to 100 and 50 years, respectively. If  
dams and equipment can technically last that  long,  chances are operations and 
economics dictate otherwise.

By and large the main material and energy flows by weight or volume involved in  
hydroelectric power construction and operation are water,  cement and concrete, 
steel  of various grades for  structures  and equipment, explosives,  and fuels and 
lubricants  for  machinery,  transportation and operation. Their provision and the 
construction  phase  itself  account  for  an  important  share  of  hydropower's  total 
impact, although water use is often ignored. Because of different scales, the data 
was normalized, dividing variables by their mean values.  Mean absolute errors 
(MAEs) can then be derived from performing leave-one-observation-out cross-
validation (LOoOCV).  As shown in figure 1, comparisons between the different 
estimators are not straightforward. 



The most evident result is the most interesting: the kriging and cokriging errors 
are lower than that of regression for the two rightmost flows of the chart. This 
shows not only that kriging performs better in the presence of data gaps but also 
provides  more  accurate  estimates.  Estimating  one  variable  at  a  time  reduces 
somewhat  the  MAEs,  as  the  comparison  of  cokriging  errors  indicates.  Both 
observations support the original hypothesis that estimators as versatile as kriging 
are particularly well suited in situations where data is missing and needed.

Does  accounting  for  several  variables  simultaneously  further  reduce  kriging 
errors?  Besides  providing  more  information  from  which  to  estimate  missing 
values, the benefits  are not obvious either. In the case of kriging, univariate or 
multivariate, both characteristics, installed capacity and annual production, enter 
in  the  calculation.  Regression  uses  installed  capacity  only.  It  appears  that  the 
advantage of multivariate over univariate kriging (and regression) are particularly 
important when data is relatively complete, as shown on the left of figure 1. To the 
contrary,  univariate  kriging  shows  lower  errors  when  data  is  missing.  One 
explanation  is  weaker  relationships  between  the  different  material  flows 
themselves than with the characteristic variables, which is a reason why they are 
characteristic.  Hence  the  preliminary  work  necessary  to  identify  appropriate 
variables describing the properties of a system.
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Fig. 1: Comparison of MAEs for different estimators



5 Conclusion

The lack of data affects inventory analysis of many hydropower plants and other  
systems. In this article, the authors show how material and energy flows involved 
in the initial phases of hydropower plants can be better estimated based on their 
design and operating characteristics. The constraints and drawbacks with respect 
to data collection and data gaps can therefore be loosened, thanks to appropriate 
and  accurate  statistical  estimators.  The  versatility  of  kriging  allows  for  better 
estimation  especially  in  the  absence  of  complete  data.  Limitations  to  this 
procedure exist, kriging is better suited for interpolation purposes. A minimum 
sample size (typically N = 30 – 50) is necessary to establish covariance functions, 
such  that  this  experiment  used  predefined  functions  and  cross-validation  to 
estimate the better model and its parameters. While no prior assumptions on the 
data are needed, the results of this parameter selection might differ from one data 
set to the next. Nevertheless, the approach presented above contributes not only to 
the estimate of missing data but also to much needed representative data which 
lacks from existing inventory databases.
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